
User Interface Design for Internet of Things and
Intelligent Agents Systems

Geert de Haan

Wittenborg University of Applied Sciences
Apeldoorn, the Netherlands

geert.dehaan@wittenborg.eu, geert.de.haan@upcmail.nl

ABSTRACT
This paper discusses a research and development position
with respect to the human-robot interaction, in the areas
of interacting with intelligent assistants, agent-based
systems and Internet of Things (IoT) applications and
interactive environments. Starting with a brief overview
of the research behind the position, we list a number of
lesson-learned from the projects concerned, and move on
the stress the need for a user-centered, lightweight and
flexible approach to the design of human-interface of
intelligent systems as a combination of user-centred
design (UCD) with co-design and co-creation methods.

Keywords
position paper: design method, user-centred design, agile
design, agent-based systems, intelligent systems,
ubiquitous computing, Internet of Things.

INTRODUCTION
Design in Human-Computer Interaction (HCI) of more in
general Human-technology Interaction has developed in
the course of time, determined by the state of the
hardware and software technology, and the resulting
affordances for HCI on the one hand, and the demands
from the context in which the HCI systems are used, on
the other hand. In the current ICT technology era,
traditionally distinct IT functions such as data collection,
processing and data access have converged
communications into small, mobile, and networked
devices, which provide functions or services that are no
longer tied to a specific time or (work) place. Ubiquitous
computing shows how ICT can penetrate our entire
habitat, yet disappear as a visible technique (Weisser,
1991). In addition, telephone hardware and new media
(software) applications allowed us to communicate and
access information resources almost anytime and
everywhere.
INTELLIGENT SYSTEMS DESIGN INSIGHTS
The background of this paper lays in research into human
interaction with intelligent assistants (de Haan, 2000; de
Haan et al., 2005), designing intelligent interfaces to
agent-based systems (de Haan, 2003), and work on
design methods for IoT and ubiquitous systems (de Haan,
2015). This research is not about ‘robots’ in the strict and
humanoid sense of the word but each of these systems
may be implemented within a robot-like interface, either

as an interactive voice, a talking head on a screen, or as
intelligent behaviour hidden inside a search-engine or
even an interactive environment. In all of these cases, the
essential part is the communication and interaction
between human beings and some intelligent agent. As an
example, in the Comris project (de Haan, 2000), the key
design question was how to enable an intelligent assistant
or agent to inform the user without disrupting the present
activities of the user; hence: how to talk to the user
without getting her out of his or her real world context.
Some of the lessons-learned from this research track can
be summarised as follows:
x don’t bother the user with everything that may be

worthwhile of telling, provide a selection.
x text messaging is far less intruding within the user’s

context then spoken messages are
x in designing intelligent systems, it is essential to

adapt the ‘sophistication’ of the interaction to the
particular type of user

x during the design process, allow for design
exploration and co-design within the (real-world)
context of use

SOFTWARE DESIGN FOR NEW MEDIA
In comparison to the design of software systems for
business processes or pay rolling, the design process of
new media products like interactive websites and mobile
apps is lightweight, where flexibility with respect to
adapting to changes in the market or the customers'
wishes is a key requirement to the design and the design
process. Because of the flexibility and ease of changing
and updating media products, the design process is very
lightweight and it uses a variety of informal tools without
much reliance on the design notation (de Haan, 2015).
The design process of media products is based on
prototypes, ranging from low-fidelity prototypes
including paper prototypes, mock-ups and sketches to
increasingly higher fidelity prototypes including
clickable prototypes and the design product itself.
Secondly, the media design process is a features-driven
process, where each design cycle (or Scrum sprint;
Schwaber and Beedle, 2002) focuses on the next most
important features to implement. Finally, the media
design process is an incremental design process with
iteration both during the design process, as well as

iteration after the design process, since maintenance is
regarded as including further adaptation of functionality
and presentation to evolving user wishes and tastes.
Media products tend to allow for flexible design methods
because of the distinction between the 'front-end', the
website or user interface of the system and the 'back-end',
the database(s) that contains all collected sensory data
and collection of links to other data and services used in
the application. The strict separation of the user interface
and the data processing part of the application allows for
easy adaptation of the front-end whilst keeping the
backend stable. Consider a website as an example. While
a website is up and running, it is possible to present
different groups of users with a different front-end,
depending for example, on the basis of the local
webserver they use. Next, data collected online about
user preferences, conversion rate or sales figures may be
used to choose the most successful front-end design.
Naturally, such a process of online optimization is not
restricted to a single trial but may take the form of a
continuous process of adapting the looks and behaviour
of a website or mobile app to the behaviour of its users.
New media design is also flexible because of the so-
called “mashup” software-architecture: media
applications follow a client-server architecture where a
central but lightweight program script derives most of its
functionality from calling external servers to provide the
data from databases, sensor information from sensor
networks, location information from location and map
servers, etc.

The mashup architecture makes it very easy to add,
change or replace functions and service providers. If a
particular sensor turns out as less useful, or a location
service is too expensive or too cumbersome, you simple
change to a different sensor or plug in another location
service. In a typical IoT application, sensors produce data
that is transmitted wirelessly (using 3G, WiFi or Low
Power Wan) to an internet gateway. Once data is
available at the gateway, it may be treated as any other
data source, and put in a database, processed and made
available by a server, like any other service.

Finally, because of the separate front-end and back-end,
in combination with the mashup architecture, there is no
inherent need for a complete or consistent design or
software specifications a particular time. Features,
functions and subroutines may be specified, designed and
added when suitable without regard to particular design
stages. As such, media application design may be feature-
driven like in e.g. Scrum (Schwaber and Beedle, 2002) in
a piece-by-piece fashion: incrementally and iteratively.
As such, the design and the implementation process may
proceed almost completely independent, allowing for a
genuine user-centred design process featuring
exploration, user participation, co-creation and co-
design, paper- and rapid prototyping, etc. (van Dijk et al.,
2011; Sanders and Stappers, 2008).

INTERFACING INTELLIGENT SYSTEMS
In this section, we will describe how, in the projects
mentioned before, the design of the user interface or
human interface, took place. In all projects (cf. de Haan,
2000; de Haan et al., 2005, de Haan, 2003; and de Haan,
2015) the principle aims was not to design a humanly
usable system but rather to design a sound technical
system in order to prove the feasibility. As an example,
in the I-Mass project (de Haan, 2003) the aim was to
design a system that is able to use a variety of different
pre-given and language-specific databases to answer user
questions in the area of cultural heritage. For example:
what is clair-obscure, who invented it and give some me
some examples. As an agent-based system, the answers
would be found by creating a bunch of agents to search
the databases using the language specific translation of
the term, and selecting the best candidate answers and
presenting them in the users native language and level of
expertise, possible in different modalities such as text,
verbal messages, etc.
In this project, to design the user interface, we used two
techniques. First, we used a co-design technique (avant
la lettre), in which cultural heritage experts were asked to
draw or to describe how they would imagine that the
results should be presented. Secondly, we used a
scenario-based technique, in which scenario’s of use
were analysed to identify elementary or unit tasks, which
were subsequently synthesised into basic user tasks
(Rizzo et al., 1997). In fact, in this project the regular
requirements-analysis approach failed because there
were simply too many requirements, at least on the paper
specifications. For designing the user interface, it did not
at all matter that the system was intelligent or agent-
based; that was merely the ‘service’, which delivered the
result, just like the translation of terms was a particular
service. Note that this perfectly fits the mashup
architecture in new media designs. The same applies to
e.g. the choice of the particular modality or the timing or
manner of presenting information to the user in all of the
projects concerned. As such, we assume that there is no
principle difference between user interface design for
new media or IoT applications and human-robot

Figure 1. The Mashup software architecture

interfaces: the intelligence of the application, the user-
adaptive and adaptable aspects, the modality and even the
social-conventions of the interaction may all be designed
and implemented as particular services in a client-server
architecture, and indeed, even the user interfacing may
be regarded as a specific service.
By way of conclusion, we would like to argue that
interface design, regardless whether concern is with a
textual interface, a talking head or a fully mobile and
social robot, the design of the user or human interface is
not principally different from regular user interface
design. What is and remains a necessary requirement,
particularly when we have to deal with any intelligent
systems with their not-so-well-predictable outcomes is
the requirement that, first, the design should allow for an
flexible co-creation or co-design approach to ensure that
the systems’ behaviour fits the prospective users and,
secondly, that it should allow for (agile) exploration and
or ‘tuning’ of the design space to find the best possible
way of presenting information or behaving, etc. to adapt
the technical system to the user’s context.
Agile design and design exploration facilitate that the
design is less concerned with pre-specified requirements
and more with creating working code (cf. the Agile
Manifesto, see: www.agilemanifesto.org) or a usable
system by learning from the actual usage of applications,
for example in so-called “Living Labs” (cf. Chi, 2008).

CONCLUSION
This paper discussed the need for a user-centred,
lightweight and flexible approach to design the user- or
human interface of robotic and other intelligent systems,
the form of a combination of user-centred design, co-
design and co-creation. In our view it is often amazing
how-well so-called ‘ordinary users’ are able to shape
their own interaction with complex and intelligent
systems, provided that they have been supplied with the
proper tools and design facilitation.

REFERENCES
Chi, E.D. (2008). Living Laboratories: Rethinking

Ecological Designs and Experimentation in Human-

Computer Interaction. Augmented Social Cognition
Research Blog from PARC. Available from:
http://asc-parc.blogspot.nl/2008/11/living-
laboratories-rethinking.html

Van Dijk, D., Kresin, F., Reitenbach, M., Rennen, E., and
Wildevuur, S., (Eds.)(2011). Users as designers - a
hands-on approach to creative research. Waag
Society, Amsterdam.

de Haan, G. (2000). Interacting with a Personal Wearable
Device. In: Wright, P., Dekker, S. and Warren, C.P.
(eds.) Proceedings of ECCE-10. Human-computer
Interaction: Confronting Reality, 2-15. August 21-23,
Linköping, Sweden.

de Haan, G. (2003) The Design of I-Mass as a Tool for
Interacting with Cultural Heritage. Tools for Digital
Interaction, Int. Symposium on ICT 03, 24-26 Sept
2003, Dublin, Ireland.

de Haan, G., van der Mast, C.A.P.G., Blanson
Henkemans. O.A. and Neerincx, M.A. (2005).
SuperAssist: Personal Assistants for Diabetes
Healthcare Treatment at Home. In: Sloan, A. (ed.),
proc. HOIT 2005: Home-Oriented Informatics and
Telematics. Springer, New York, 2005, pp. 261-275.

de Haan, G. (2013). A Vision of the Future of Media
Technology Design Education - design and education
from HCI to UbiComp. In: Proceedings Computer
Science Education Research Conference - CSERC
2013, 4-5 april 2013, Arnhem, 66-72.

de Haan, G. (2015). HCI Design Methods: where next?
From user-centred to creative design and beyond.
Proc. of ECCE 2015: Understanding Design through
Cognition. 1 – 3 July 2015; Warsaw, Poland.

Rizzo, A., Andreadis, A. and Marchigiani, E. (1997). The
AVANTI project. In: Proceedings of ACM DIS
Conference, Amsterdam, August 18-20.

Sanders, E.B.-N., and Stappers, P.J. (2008). Co-creation
and the new Landscapes of Design. CoDesign, 4 (1),
5-18.

Schwaber, K., and Beedle, M. (2002). Agile Software
Development with Scrum. Prentice Hall.

Weiser, M. (1991). The Computer for the 21st Century.
Scientific American, 265(3), 94-104.

http://www.agilemanifesto.org/

