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ABSTRACT
Sliding autonomy is used in teleoperation to adjusting a
robot’s level of local autonomy to match the user’s needs. We
claim that sliding autonomy can also improve mobile robotic
telepresence, but we argue that existing approaches cannot
be adopted to this domain without adequate modifications.
We address in particular the question of how the need for
autonomy, and its appropriate degree, can be inferred from
measurable information.
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Mobile robotic telepresence (MRP) denotes the social inter-
action of a (remote) user with one or multiple persons (local
users) in a different location through the use of a mobile
robot. The interaction between humans via a telepresence
robot relies on the integration of several interfaces: The re-
mote user interacts with a computer interface, which is used
to control the robot from afar. On the other end, the local
user, i.e., the person being present in the same place as the
robot, interacts with the remote user through an interface.
MRP can be demanding for the remote user, as it also requires
them to control the robot while performing the interaction.
In robot teleoperation, the notion of sliding autonomy is

often used to lower the burden of the remote user, resulting
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in task executions that are more effective and safe. We claim
that sliding autonomy could and should be profitably used in
MRP. However, we also maintain that MRP is fundamentally
different from teleoperation. The predominant use cases for
mobile robotic telepresence encompass elderly care, health
care, office environments and teaching [6]. There are three
properties that these scenarios mostly have in common: (1)
Unskilled remote users, (2) the main task involves social in-
teraction with one or multiple local users – as opposed to
observation or manipulation, and (3) navigation (support) as
the robot’s sliding function. Consequently, the existing con-
cepts and methods for sliding autonomy cannot be directly
applied to MRP. Rather, a novel research effort is needed to
arrive at a framework for sliding autonomy in MRP. The next
sections motivate these claims and point to some directions
for the research effort.
The effective implementation of sliding autonomy essen-

tially depends on the ability to automatically decide what
functions should be taken over by the robot and when they
should be handed over to the operator. This requires the
ability to answer the following questions:

• Is the operator performing adequately?
• If that is not the case, can some of their tasks or sub-
tasks be executed (semi-)autonomously?

• If so, what can and needs to be measured to determine
which of these tasks should be taken over?

Many approaches to sliding autonomy are inspired by
general teleoperation, in which one human controls or su-
pervises a group of (semi-)autonomous robots. The human
operator is assumed to be expertly trained in handling the
controls in a wide range of scenarios, and usually takes action
only when one or more of the team’s robots fail to recover
from unexpected situations. As many as ten discrete levels of
autonomy have been identified in this context [1], ranging
from immediate teleoperation to full autonomy.

In contrast, MRP scenarios typically involve a one-operator-
one-robot configuration, and they do not vary quite as widely.
Accordingly, it is clear that the concept of neglect does not
play a role in describing the various degrees of autonomy
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that a telepresence robot should provide. At the same time,
we do not presuppose a skilled and professional operator.

In MRP systems for eldercare, the main limiting factor
for the performance is the remote user’s mental workload
level. The mental workload is a measure that describes how
well a person is able to handle all of the controls and tasks
of which they are required to keep track. All human beings
have a limited capacity for simultaneously analyzing and
memorizing information and executing functions. This ca-
pacity both varies among different people [4] and – over
time – within single individuals as a function of their fo-
cus, stress level and mental fatigue. In turn, the amount of
attention that a specific task demands is dependent on a
user’s proficiency in that task, as learning a skill causes it
to become a procedural memory whose execution becomes
less conscious, consequently putting less of a strain on one’s
working memory. Mental workload can be estimated both
indirectly, by observing a person’s performance; or directly
from certain physiological signals that correlate with work-
load, focus and stress, such as heart rate variability, blood
pressure, and skin conductance [5], as well as neurophysio-
logical signals such as localized event-related potentials and
electroencephalographic pattern fluctuations [3].
Located at the other end of the telepresence interaction

and of arguably equal importance to the interaction quality,
is the local user. While their workload is usually not of sig-
nificance, other factors impact performace. If they do not
know how best to interact with their robotic counterpart,
e.g., because they are not accurately aware of its sensory and
actuating capabilities, or if they simply reject the technology
altogether [2], the quality of the interaction may suffer.
It may be possible to detect the local user’s satisfaction

automatically and on this basis make assumptions regarding
the overall interaction quality. For the case of an ongoing di-
alogue between remote and local user, sociometry describes
objective measures from which to infer the quality of their
interaction.
Once a reasonable assessment of the interaction quality

has been made, the resulting data can be utilized to compute
an adequate degree of autonomy. The overall goal is to reach
an optimal balance which enables the user to accomplish
their primary tasks and improve their proficiency with the
interface system, while at the same time avoiding to exceed
their attention capacity by relieving them of more basic
tasks, such as navigation. We distinguish four basic levels of
adjustable autonomy.
(0) Manual teleoperation — The operator’s workload is

low, or they are idle, or they are navigating sufficiently
well.

(1) Collision avoidance — The robot adjusts to this level
when the remote user navigates and causes the robot
to collide with objects or people, regardless of whether

they are engaged in a conversation or whether or not
their workload is elevated. An example situation for
this level involves a novice user who is not (yet) profi-
cient in controlling the robot. This takeover is rolled
back if the collision avoidance has not been forced to
intervene in a certain amount of time. Since the opera-
tor is still navigating, a learning effect is retained.

(2) Autonomous driving with human supervision -– The
remote user is engaged in a social interaction while
also maneuvering the robot. An elevated workload is
being measured and the interaction quality is less than
optimal. In this case the robot takes over navigation
entirely and possibly carries out higher-level naviga-
tion tasks, such as following a person or driving to a
certain room. Control is handed back once the work-
load has returned to an acceptable level or if the social
interaction ends.

(3) Full navigational autonomy — This level is optional
and will be activated when the remote user is away
from the computer or has been inactive for a while or
if the robot needs to return to its charging station .

In this work we have discussed the caveats when porting
frameworks for general sliding autonomy to MRP. Several
key differences should be considered when doing so:

• In MRP, it should not be required that the remote user
be skilled in operating the robot.

• Since the main objective of MRP is social interaction,
constellations of more than one robot per operator are
unlikely.

• Measures of task performance quality include social
performance.

• Sliding functions are less diverse – they are mostly
confined to navigation, including positioning in social
settings.
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